Graph Embedding Matrix Sharing With Differential Privacy
نویسندگان
چکیده
منابع مشابه
Adaptively Sharing Time-Series with Differential Privacy
Sharing real-time aggregate statistics of private data has given much benefit to the public to perform data mining for understanding important phenomena, such as Influenza outbreaks and traffic congestions. We propose an adaptive approach with sampling and estimation to release aggregated time series under differential privacy, the key innovation of which is that we utilize feedback loops based...
متن کاملPrivacy-Integrated Graph Clustering Through Differential Privacy
Data mining tasks like graph clustering can automatically process a large amount of data and retrieve valuable information. However, publishing such graph clustering results also involves privacy risks. In particular, linking the result with available background knowledge can disclose private information of the data set. The strong privacy guarantees of the differential privacy model allow copi...
متن کاملKnowledge Graph Embedding via Dynamic Mapping Matrix
Knowledge graphs are useful resources for numerous AI applications, but they are far from completeness. Previous work such as TransE, TransH and TransR/CTransR regard a relation as translation from head entity to tail entity and the CTransR achieves state-of-the-art performance. In this paper, we propose a more fine-grained model named TransD, which is an improvement of TransR/CTransR. In Trans...
متن کاملGraph-based Clustering under Differential Privacy
In this paper, we present the first differentially private clustering method for arbitrary-shaped node clusters in a graph. This algorithm takes as input only an approximate Minimum Spanning Tree (MST) T released under weight differential privacy constraints from the graph. Then, the underlying nonconvex clustering partition is successfully recovered from cutting optimal cuts on T . As opposed ...
متن کاملRandom Projections, Graph Sparsification, and Differential Privacy
This paper initiates the study of preserving differential privacy (DP) when the data-set is sparse. We study the problem of constructing efficient sanitizer that preserves DP and guarantees high utility for answering cut-queries on graphs. The main motivation for studying sparse graphs arises from the empirical evidences that social networking sites are sparse graphs. We also motivate and advoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2927365